
Obfuscated dechiper routine analysis using theorem prover
towards effective trusted computing

Ruo Ando and Kouichi Furukawa
National Institute of Information and Communication Technology,

4-2-1 Nukui-Kitamachi, Koganei,
Tokyo 184-8795 Japan

Keio University, Graduate School of Media and Governance,
Endo 5322 Fujisawa 252-8520 Japan

Abstract

Cyber attacks has become more sophisticated, which im-
poses a great burden on business IT infrastructure. Trusted
computing is a promising technology to cope with malicious
or illegal access to mission-critical servers. Code obfus-
cation and encryption are essential techniques for trusted
computing. In this paper, we present an obfuscated decipher
routine analysis using theorem prover. For detecting pa-
rameters of decipher routine, we apply equality substitution
techniques called paramodulation and demodulation. Be-
sides, we apply look-ahead strategies to speed up our anal-
ysis. Experimental result shows that FoL theorem prover
works well for analyzing obfuscated decipher routine, par-
ticularly detecting parameters.

1 Introduction

Cyber attacks has become more sophisticated, which im-
poses a great burden on business IT infrastructure. Trusted
computing is a promising technology to cope with ma-
licious or illegal access to mission-critical servers. Be-
sides attestation, code obfuscation and encryption are es-
sential techniques for trusted computing. In this paper, we
present an obfuscated decipher routine analysis using theo-
rem prover. For prototyping system, we use FoL (First order
Logic) theorem prover OTTER[5].

Table 1 and 2 are the example of code obfuscation. These
are functionally equivalent, which execute GetModuleHan-
dleA (Windows API). Code of Table 2 is obfuscated from
Table 1.

2 Detecting parameters of decipher routine

There are four parameters of decipher routine: address
of encrypted data, key, address of loop entry point, and
counter. The basic structure of obfuscated decipher routine
is as follows:

set A address_of_payload
set B key
set C address_loop_start
set D counter

address_loop_start
payload_transfer(A)
decryptor(B)
parload_transfer(A)
branch(D)
goto_start(C)

When we detect four parameters A-D, the detection is
completed.

2.1 Code disassemble with theorem
prover

In proposal system, binary code is disassembled by de-
modulation theorem prover. Assembly code consists of op-
eration and operand (argument). For example, we formulate
disassembling in the script of theorem prover.

list(demodulators).
/* operation disassemble */
c(Y,line)=c(mov(ax),line).
/* operand */
c(X,line)=c(reg(ax,ax),line).
end_of_list.

1 mov dword3, 6E72654Bh
2 mov dword4, 32336C65h
3 mov dword5, 0h
4 push offset dword3
5 call ds:GetModuleHandleA

Table 1. Assembly code of GetModuleHan-
dleA API.

3 mov dword1,0h
3 mov cdx,dword1
3 mov dword2,edx
3 mov edp,dword2
2 mov edi,32336C65h
2 lea eax,[edi]
1 mov esi,0A624540h
1 or esi,4670214Bh
2 lea edi,[eax]
2 mov dword4,cid
3 mov edx,ebp
3 mov dword5,edx
1 mov dwrod3,esi
4 mov edx,offset dword3
4 push edx
5 mov dword6,offset GetModuleHandleA
5 push dword6
5 pop dwprd7
5 mov edx,dword7
5 call dword ptr ds:0[edx]

Table 2. Obfuscated assembly code of Get-
ModuleHandleA API

For operand, we formulate all registers. For operation,
we formulate some of instructions such as transfer and arith-
metic operation.

2.2 Paramodulation and demodulation

Paramodulation[15] is one of the techniques of equa-
tional reasoning. The purpose of this inference rule is for an
equality substitution to occur from one clause to another. In
the discussion of completeness and efficiency, paramodula-
tion is often compared with demodulation[14]. Demodula-
tion is mainly designed for canonicalizing information and
sometimes more effective than paramodulation. However,
demodulation does not have power to cope with clauses as
follows:

fact: f(g(x),x).

fact: equal(g(a),b).
conclusion f(b,a).

That is, paramodulation is a generalization of the substitu-
tion rule for equality. For searching parameters of obfus-
cated decipher routine, we should use both paramodulation
and demodulation.

fact: equal(data_16e,514Bh).
fact: mov(reg(ah),const(data_16e),
line(63)).
conclusion : mov(reg(ah),const(514Bh),
line(63)).

The clauses above is the application of demodulation to deal
with constant number defined in the beginning of program.
In obfuscating decipher routine, there’s another way to hide
parameter using mov (data transfer) instruction.

fact: mov(reg(ah),const(2Ch),line(162)).
fact: mov(reg(bx),reg(ah),
line(300)).
/* decrypter */
fact: xor(reg(dx),reg(bx),
line(431)).

In this case, we insert this clause to occur paramodulation.

-mov(reg(x),const(y),line(z)) |
x=const(y,z).
conclusion:
decrypter(reg(dx),key(const(2Ch,162),
line(431)).

Conclusion is generated by paramodulation. By using
paramodulation, we detect the value of [1]key, [2]address
of payload, [3]loop counter (how many times the routine
repeats), and [4]entry point of decipher routine.

2.3 Applying hot list strategy

In this paper we apply a heuristics to make paramodu-
lation faster. Hot list strategy, proposed by Larry Wos[15],
is one of the look ahead strategies. Look-ahead strategy is
designed to enable reasoning program to draw conclusions
quickly using a list whose elements are processed with each
newly retained clause. Mainly, hot list strategy is used for
controlling paramodulation. By using this strategy, we can
emphasize particular clauses on hot list on paramodulation.

3 Numerical results

In this section we validate the effectiveness of our system
by numerical output of theorem prover. First, we briefly
discuss the result of weighting startegy.

2

3.1 SMEG

In experiment, we use SMEG (Simulated Metamorphic
Encryption Generator)[15] to generate sample programs of
obfuscated decipher routine. SMEG can generate hundreds
of executables including obfuscated decipher routine. There
are three types of SMEG mutations as shown in Table 3.
Type A and C uses mov and xchg (exchange) to transfer
the encrypted data. Type B uses indirect addressing (xor
[address] key) to execute payload transfer and decryption at
the same time. In type D, stack operation is applied for data
transfer (fetch) and loop II (push / retf).

3.2 Hot list strategy

To detect parameters, clauses are generated by reasoning
program for paramodulation as follows.

-mov(reg(x),const(y),z,w) |
x=const(y,z).

Clauses on right side are called paramodulant. Pamod-
ulant is used by theorem prover for equality substitution
(paramodulation). We make two hot lists. In other words,
we set hot list clauses about registers EAX, EBX, ECX
EDX and ESI, EDI, EBP, ESP.

hot list group I :
calculation registers
list(hot).
ax=const(x,y). bx=const(x,y).
cx=const(x,y). dx=const(x,y).
end_of_list.

hot list group II :
memory registers
list(hot).
di=const(x,y). si=const(x,y).
bi=const(x,y). bp=const(x,y).
end_of_list.

Table 6, 7, 8 and 9 are result of applying hot lists for four
types of SMEG generation. We make 10 hot list (list(hot))
accorging to eight registers and two groups{eax, ecx, ebx,
edx} and {edi, esi, ebi, ebp}. Among 8 hot lists (eax,
ecx, ebx,edx, edi, esi, ebi, ebp), which hot list increase
performance best depends on types of generated code. As
a whole, hot list group of calculation registers{eax, ecx,
ebx, edx} results in good performance compared with group
{edi, esi, ebi, ebp}. In some bad cases hot list of group II in-
crease the number generated clauses compared with no hot
list.

Let T(group I) be computing time with hot list group
I. Let T(no weight) and T(group II) computing time with
no heat and hot list group II. In experiment, our system
achieves condition.

Type A (no weighting) Type A (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 915 no heat 707
EAX 677 EAX 677
EBX 670 EBX 602
ECX 799 ECX 541
EDX 756 EDX 540
EDI 1078 EDI 822
ESI 1055 ESI 801
EBI 1055 EBI 801
EBP 1055 EBP 801
Group I 468 Group I 366
Group II 1510 Group II 1206

Table 4. Hot list strategies for Type A.
Paramodulation for detecting parameters
into register E* is speeded up by hot list.
We set 10 hot lists for each register and two
groups.

T(group I) < T(no weight) < T(group II)
or
T(group I) < T(group II) < T(no weight)

Particularly in type A and D, our system achieves this con-
dition.

T(group I) *3 < T(no weight)
where T(group II) < T(no weight)
or
T(group I) *3 < T(group II)
where T(no weight) < T(group II)

We can conclude that proposed parallel analysis model is
effective. Particularly in type A and D, it is shown that we
can make deduction system faster without appending hard-
ware computing resources. c

4 Conclusion

Cyber attacks has become more sophisticated, which im-
pose a great burden on business IT infrastructure. Trusted
computing is expecting a promising technology to cope
with malicious or illegal access to mission-critical servers.
Code obfuscation and encryption are essential techniques
for trusted computing. For detecting parameters of decipher
routine, we apply equality substitution techniques called
paramodulation and demodulation. Besides, we apply look-
ahead strategies called hot list to speed up our analysis. For
prototyping our system, we present an obfuscated decipher
routing analysis using theorem prover. Experimental result
shows that hot list strategy can reduce the computing time.

3

Type A Type B Type C Type D
loop I set loopstart loop start set loopstart set loopstart
transfer I mov data address decrypt [address] key xchg address data push data / pop data
decrypt I decrypt data key decrypt [address] key decrypt data key decrypt data key
transfer II mov address data decrypt [address] key xchg address data mov address data
decrypt II inc address inc address inc address inc address
branch II dec counter dec counter dec counter dec counter
branch test counter counter test counter counter test counter counter test counter counter
loop II jmp loop start jmp loop start jmp loop start push / retf

Table 3. Three kinds of assembly code generated by SMEG

Type B (no weighting) Type B (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 1592 no heat 769
EAX 915 EAX 605
EBX 1561 EBX 494
ECX 497 ECX 490
EDX 519 EDX 593
EDI 1921 EDI 1164
ESI 1724 ESI 843
EBI 1724 EBI 685
EBP 1724 EBP 685
Group I 463 Group I 242
Group II 2422 Group II 1807

Table 5. Hot list strategies for Type B.

From results obtained, we can conclude that theorem prover
works well for analyzing obfuscated decipher routine, par-
ticularly detecting parameters.

References

[1] Trusted computing:
https://www.trustedcomputinggroup.org/home

[2] Peter Szor and Peter Ferrie,” Hunting for Metamor-
phic”, Virus Bulletin Conference, 2001.

[3] Larry Wos, Gail W. Pieper, ”The Hot List Strategy”,
Journal of Automated Reasoning, 1999

[4] Simulated Metamorphic Encryption Generator avail-
able at
http//vx.netlux.org/vx.php?id=es06

[5] OTTER automated deduction system available at
http//www.mcs.anl.gov/AR/otter/

Type C (no weighting) Type C (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 976 no heat 604
EAX 1018 EAX 605
EBX 720 EBX 494
ECX 946 ECX 490
EDX 976 EDX 593
EDI 1592 EDI 1164
ESI 1272 ESI 843
EBI 1114 EBI 685
EBP 1114 EBP 685
Group I 738 Group I 463
Group II 2284 Group II 1807

Table 6. Hot list strategies for Type C.

Type D (no weighting) Type D (with weighting)
HOT LIST all clauses HOT LIST all clauses
no heat 1877 no heat 801
EAX 1444 EAX 587
EBX 1675 EBX 587
ECX 870 ECX 599
EDX 1877 EDX 737
EDI 7406 EDI 1462
ESI 2028 ESI 876
EBI 2028 EBI 876
EBP 2028 EBP 876
Group I 563 Group I 259
Group II 8186 Group II 1891

Table 7. Hot list strategies for Type D.

4

